↓ Skip to main content

Biological Networks and Pathway Analysis

Overview of attention for book
Cover of 'Biological Networks and Pathway Analysis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Practical Guide to Quantitative Interactor Screening with Next-Generation Sequencing (QIS-Seq)
  3. Altmetric Badge
    Chapter 2 sbv IMPROVER: Modern Approach to Systems Biology
  4. Altmetric Badge
    Chapter 3 Mathematical Justification of Expression-Based Pathway Activation Scoring (PAS)
  5. Altmetric Badge
    Chapter 4 Bioinformatics Meets Biomedicine: OncoFinder, a Quantitative Approach for Interrogating Molecular Pathways Using Gene Expression Data
  6. Altmetric Badge
    Chapter 5 Strategic Integration of Multiple Bioinformatics Resources for System Level Analysis of Biological Networks
  7. Altmetric Badge
    Chapter 6 Functional Analysis of OMICs Data and Small Molecule Compounds in an Integrated “Knowledge-Based” Platform
  8. Altmetric Badge
    Chapter 7 Extracting the Strongest Signals from Omics Data: Differentially Expressed Pathways and Beyond
  9. Altmetric Badge
    Chapter 8 Search for Master Regulators in Walking Cancer Pathways
  10. Altmetric Badge
    Chapter 9 Mathematical Modeling of Avidity Distribution and Estimating General Binding Properties of Transcription Factors from Genome-Wide Binding Profiles
  11. Altmetric Badge
    Chapter 10 A Weighted SNP Correlation Network Method for Estimating Polygenic Risk Scores
  12. Altmetric Badge
    Chapter 11 Analysis of cis-Regulatory Elements in Gene Co-expression Networks in Cancer
  13. Altmetric Badge
    Chapter 12 Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways
  14. Altmetric Badge
    Chapter 13 ArrayTrack: An FDA and Public Genomic Tool
  15. Altmetric Badge
    Chapter 14 Identification of Transcriptional Regulators of Psoriasis from RNA-Seq Experiments
  16. Altmetric Badge
    Chapter 15 Comprehensive Analyses of Tissue-Specific Networks with Implications to Psychiatric Diseases
  17. Altmetric Badge
    Chapter 16 Semantic Data Integration and Knowledge Management to Represent Biological Network Associations
  18. Altmetric Badge
    Chapter 17 Knowledge-Based Compact Disease Models: A Rapid Path from High-Throughput Data to Understanding Causative Mechanisms for a Complex Disease
  19. Altmetric Badge
    Chapter 18 Pharmacologic Manipulation of Wnt Signaling and Cancer Stem Cells
  20. Altmetric Badge
    Chapter 19 Functional Network Disruptions in Schizophrenia
Attention for Chapter 16: Semantic Data Integration and Knowledge Management to Represent Biological Network Associations
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
20 Mendeley
citeulike
1 CiteULike
Chapter title
Semantic Data Integration and Knowledge Management to Represent Biological Network Associations
Chapter number 16
Book title
Biological Networks and Pathway Analysis
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7027-8_16
Pubmed ID
Book ISBNs
978-1-4939-7025-4, 978-1-4939-7027-8
Authors

Sascha Losko, Klaus Heumann, Losko, Sascha, Heumann, Klaus

Abstract

The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 20%
Student > Master 4 20%
Professor 3 15%
Other 1 5%
Student > Bachelor 1 5%
Other 1 5%
Unknown 6 30%
Readers by discipline Count As %
Computer Science 6 30%
Medicine and Dentistry 3 15%
Agricultural and Biological Sciences 1 5%
Arts and Humanities 1 5%
Psychology 1 5%
Other 1 5%
Unknown 7 35%